
1.8 Development & Management of Critical Interfaces

1.8 Development & Management of Critical
Interfaces

1.8 Development of Interfaces State of South Carolina

Table of Contents

1.8 Development & Management of Critical Interfaces .. 1
1.8 Development and Management of Critical Interfaces .. 3
Guiding Principles... 3
Interface Design and Development Approach.. 4
Functional Design ... 6
Technical Design Specification ... 6
Interface Program Development .. 7
Unit Testing ... 7
Integration/End-to-End Testing.. 8
Promote to Production ... 8
Roles and Responsibilities... 9
Interface Phases.. 9
Development.. 9
End-to-End/Integration Testing.. 9
Promote to Production ... 10
Interface Tools... 10
Integration Technique... 10
Type of Business System... 11
Type of Messaging Concept to be used for Exchanging Content: 11
Scenario 1: Integration of Business Systems Using the IDoc Adapter 12
Scenario 2: Integration of Business Systems Using the RFC Adapter 13
Scenario 3: Integration of Business systems using the File Adapter 14
Scenario 4: Integration of Business systems using the JMS Adapter 15
Scenario 5: Integration of Business systems using the JDBC Adapter................. 16
Scenario 6: Integration of Remote Clients or Providers of Web Services Using
the SOAP Adapter ... 17
Scenario 7: Integration of Business Systems via the Plain HTTP Adapter............ 19
Scenario 8: Integration of Business systems using Proxies 20

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 2

1.8 Development of Interfaces State of South Carolina

1.8 Development and Management of Critical
Interfaces

The data and processes used by the State of South Carolina are assets, that when
properly distributed across the organization allow for timely, non-redundant access to
collective information. This distribution, however, is dependent on tightly integrating
the data and processes across numerous applications, both internal and external to
by State of South Carolina. To achieve this cross application integration, precise
coordination is required during application design and development to avoid data
redundancy caused by complicated or unclear data and process usage.

Data and process integration eliminates the boundaries of traditional systems and
supports an organization’s ability to move toward the use of enterprise models and
an Enterprise Service Architecture. These models identify enterprise objects, that,
when used to create application systems, provide users access to accurate
information when and where they need it. A sound integration model achieved by
identifying shared enterprise objects will:

• Provide a single point of entry for all data
• Identify data stewardship (vs. ownership)
• Eliminate data redundancy
• Eliminate process redundancy
• Allow the use of data and processes independent of organizational structure
• Provide consistent data across applications
• Provide data and process location transparency

Although more effort may be required to design and implement integrated enterprise
software applications in the short -term, the long-term benefits are of strategic value
because:

• Information is available to all systems and users who need it
• Consistent data across applications provides accurate and timely information
• Access to information becomes less complex and more flexible
• Data storage requirements are reduced
• Duplicate data entry is avoided
• The amount of application code to maintain is reduced
• An enterprise view of the information assets will facilitate the integration of

new applications

Guiding Principles
The guiding principles outline baseline concepts and key values to be used during
the identification and design of the ERP systems interfaces. They include:

• Changes to existing applications will be minimized. Data definitions and
structures within ERP will be different from any existing applications. In some
cases these applications will require changes to align those data items that
are interfaced to the new definitions.

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 3

1.8 Development of Interfaces State of South Carolina

• In determining an interoperability method, consideration will be given both to
known and anticipated requirements. This includes consideration of future
releases and the reuse of existing legacy interfaces in the design and
development of new interfaces with the same data objects.

• Interfaces should be identified at a data object level, rather than at a single
source or target system level. By considering all applications that either
provide data of a given class to ERP, or require data from a given class from
ERP, interface design will consider possible data extraction and consolidation
that could reduce the number of development efforts required overall.

• All data messages transferred into ERP are subject to transformation routines
to convert the message structure and values into the ERP system required
format. Likewise, messages transferred out of ERP are subject to similar
transformation routines in order to properly format the messages for the target
system.

• Data integrity will be maintained since the same information appears in more
than one application, it is important that it has the same structure and
contents, e.g., a company has to be identified by the same name and have
the same address in every application that refers to it.

• Temporary interfaces will be minimized during release rollouts. Temporary
interfaces are required to maintain integrity between applications still to be
replaced and those already replaced.

• Process owners are responsible for identifying interfacing requirements for
core applications. These include interfaces between any legacy applications
as well as any interfaces to external trading partners such as other
government agencies or financial institutions.

Interface Design and Development Approach

The sections below discuss the approach for identifying the interface requirements
and the process to develop, test, and execute interface programs. Figure 1, ERP
Interface Process, is a pictorial representation of the steps to be executed in the
interface process.

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 4

1.8 Development of Interfaces State of South Carolina

Baselined
Technical

Specification

Functional Design

Technical Design

Development

Unit Testing

Integration End-to-
End Testing

Promote to
Production

Technical
Design

Walkthrough

Baselined
Functional

Specification

Functional
Design

Walkthrough

Baselined
Development

Objects

Accepted
Development

Objects

Figure 1. ERP Interface Process

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 5

1.8 Development of Interfaces State of South Carolina

Functional Design
During the blueprinting phase, the business process teams will undertake the
process of defining ERP interface requirements of each deployment. The by-product
of the requirements definition process will be a functional design for each interface.
The purpose of the functional design is to outline interface requirements and to
outline data field mappings and data transformation rules. Because an interface may
be comprised of several data flows, the functional specifications will include for each
the requirements, field mappings, and transformation rules. Specifically, the
functional specification should include the following for each development object:

• Source and destination file layouts
• Crosswalks applying to interfaced transactions
• Description of ERP transactions to be used for data loads
• Field maps of source fields to destination fields
• Valid values for each destination field with a value constraint
• Load dependencies
• Data transformation rules
• Reconciliation method and outputs required

The specifications will be used as the input needed to develop the technical
specifications that will ultimately be used as the basis for the coding activities. When
specifications are complete, a functional design walk-through will be conducted to
ensure the interface has been designed properly from a functional perspective.
Upon completion, specifications will be reviewed and signed-off by an interface team
composed of ERP Project Management. Once sign-off has occurred, all
specifications will go under configuration management -- changes may made only
through the formal change request and/or defect request processes.

Technical Design Specification
The technical specifications provide the necessary detail required to turn a functional
requirement into a custom program. They are created by the Development Team
with support from the core State of South Carolina Functional and Technical Source
System SMEs. They are prioritized by load sequence within the deployment.
Technical specifications will include:

• Technical description of interface object
• Description of interfacing method
• Interoperability method
• Source/destination file names, locations, and layouts
• Retention strategy for inbound and outbound files
• ERP load/extract program type, transaction, load/extract dependencies
• Field level mappings of source file to destination transaction
• Valid values for each field with a value constraint
• Error handling routines
• Unit testing conditions/plan
• Validation method and planned outputs (includes load statistics and reporting)

When specifications are complete, a technical design walk-through will be conducted
to ensure the interface has been designed properly from a technical perspective.

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 6

1.8 Development of Interfaces State of South Carolina

Upon completion, the technical specifications will be reviewed and signed-off by the
State of South Carolina for which the interface is being developed and by ERP
Project Management. Once they are signed-off, all specifications will be placed
under configuration management changes, only through the formal change request
and/or defect request processes.

As stated in the Guiding Principles, every effort will be made during the blueprint
phase to consolidate interface requirements. By evaluating all sources or targets of a
particular data class, interface designers will consider how best to organize all the
data requirements with a goal towards creating a generic design supporting all
sources/targets of a particular data class so as to reduce the number of interfaces to
be developed, tested, and maintained.

Interface Program Development
When the technical design is complete and reviewed, the assigned developer will
construct the proposed solution based on the final Technical Design Specification.
As development components are completed, unit testing of individual objects will be
performed per the test conditions outlined in the unit test plan created during the
technical design. The developers will contact business process team members to
ensure appropriate understanding of the business process flow and ensure
reasonable data values are used in testing.

Unit Testing
Upon completion of the coding, unit testing will be performed. Unit tests are
executed to ensure each interface object is written to specification and to ensure that
all is functioning as expected. This will be measured by comparing the actual results
of the unit test to the expected results of the unit test. The development/testing cycle
will be iterative until the unit test execution achieves expected results.

After coding and unit testing of objects related to a single interface are complete, the
developer(s) will notify the systems development team lead the object is complete. A
technical specialist will perform a quality review of the development packet to ensure
basic adherence to functional and technical designs, program coding and naming
standards. Following the technical quality review, the systems development lead will
schedule a development walkthrough with the business process team member
assigned to the interface request. In the walkthrough, the developer(s) will review the
results of the coding and testing efforts and will turn the completed object over to the
business process team.

Once the development effort has been approved, the assigned developer will
complete the documentation, baseline the development objects, and release the
development objects for transport into the quality assurance/testing instance. Once
baselined, changes will be made only through the formal change request and/or
defect request processes.

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 7

1.8 Development of Interfaces State of South Carolina

Integration/End-to-End Testing
Integration testing will be exercising the interface objects in the sequence they would
be executed in a single production-like transaction. End-to-End testing will be
exercising all interface objects in the sequence they would be executed in a more
business process oriented manner – a business process will be the combination of
one or more single transactions. Test cases reflecting testing conditions outlined in
the specifications will be created and tested. Test cases will outline expected results
prior to execution of the test – results of the test execution will be compared to
expected results to determine the level of success. These testing cycles will be
iterative until the code achieves the desired result – defect reports and change
requests will document ineffective code and definition respectively. Any change that
results in a change in the functional or technical definition of the interface of objects
to be developed will result in updates to the functional and/or technical
specifications. User acceptance of results will be required at this point signifying the
interface is ready to be promoted to production.

Promote to Production
For interface requests to be executed via scheduled batch processing, information
about the development object and run-time requirements must be documented and
provided to systems operation personnel so that a batch schedule can be created.
Documentation will identify the process flow, program run procedures, re-run logic,
technical contact and business contact for the development object.
The ultimate goal of this effort is to:

• Perform cutover plan
• Complete cutover checklist
• Verify system is ready to go live
• Go live

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 8

1.8 Development of Interfaces State of South Carolina

Roles and Responsibilities
The table below outlines the team primarily responsible for each activity and the
teams that provide support for each activity.

Conversion Activity Primary Responsibility Support
8.2.1. Functional Design Functional Teams Interfacing System SMEs
8.2.2. Technical Design Interface Team Functional Team

Interfacing System SMEs
8.2.3. Development Interface Team Interfacing System SMEs
8.2.4. Unit Testing Interface Team Functional Team
8.2.5. Integration/End-to-End Testing Testing Team Interface Team

Functional Team
8.2.6. Promote to Production Interface Team Functional Team

Table 1. Interface Development Roles & Responsibilities

Interface Phases
The interface steps outlined in the above sections will be performed in phases. The
phases include development, testing, and production execution.

Development
The development phase includes writing the functional and technical specifications,
developing the interface objects, and unit test execution. Steps in this phase have
the following dependencies:

• Functional specifications must be written before the technical specifications.
• Technical specifications must be written before the data extract and load

routines are written.
• Functional and technical specifications must be approved and baselined

before code development begins.
• Unit tests will be executed when the development of each object is complete.

End-to-End/Integration Testing
In this testing, data will be transferred from the source system to the destination as it
would in the production environment. Each interface object created will be tested
with all possible data scenarios to ensure the interface functions as expected under
all conditions. Tests that meet expectations will be closed; those that do no will
result in defect reports or change requests that will result in corrective actions. All
changes made as a result of a defect report or change request will be retested, with
the testing, correction process being iteratively executed until all objects have been
successfully tested.

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 9

1.8 Development of Interfaces State of South Carolina

Promote to Production
After the end-to-end/integration testing has completed and the system build is
underway, all development objects associated with each interface will be migrated to
the production environment for execution. Figure 2, ERP Interface Sequence, is a
pictorial representation of the interface development phases and their
interrelationships.

Integration End-to-
End Testing

Promote to
Production

Functional Design Technical Design Development Unit TestingFunctional Design Technical Design Development Unit Testing

Repeat as necessary
Repeat as necessary

Development

Figure 2. ERP Interface Sequence

Interface Tools
The Exchange Infrastructure (XI) will be used to develop and deploy the interfaces
for each ERP deployment. See the Development Tools v1.0 document for details on
XI.

Integration Technique
The Exchange Infrastructure is tailored to general standards so as to remain open
for the integration of external systems. At the center of the infrastructure is a
message-orientated communication using HTTP (Hyper Text Transfer Protocol). The
application-specific contents are transferred in messages in user-defined XML
(eXtensible Markup Language) schema from the sender to the receiver using the
Integration Engine. The structure of a message is therefore determined by the
interface data structures used.

The central concept is that, during the design phase, all interfaces required are
initially developed independently of a platform and made available in the form of a
WSDL description (WSDL: Web Service Description Language). Using this

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 10

1.8 Development of Interfaces State of South Carolina

description, for example, define mappings between interfaces without having an
effect on an existing system landscape. All design phase data is saved in the
Integration Repository to be implemented later in a particular system landscape. In
the second phase, configuration time, one can select components, interfaces, and
mappings saved in the Integration Repository that are appropriate for the system
landscape and collaborative processes and assign them to each other in logical
routing. The result of this configuration is saved in the Integration Directory and can
be called and evaluated from the Exchange Infrastructure runtime.

The integration knowledge of a collaborative process is therefore saved centrally in
the Integration Repository at design time and in the Integration Directory at
configuration time. In this way, SAP Exchange Infrastructure follows the principle of
Shared Collaboration Knowledge: Information about a collaborative process need no
longer be accessed in each of the systems involved, but called centrally instead.
This procedure considerably reduces the costs for the development and
maintenance of the shared applications.

To communicate the system interface approach and demonstrate possible
integration solutions, all information within this section is presented as scenario-
based models. These models take into account the capabilities of involved business
systems currently within the existing State of South Carolina system landscape as
well as State of South Carolina trading partners.

The Integration Server retrieves required Collaboration Knowledge on Routing,
Mapping and Address resolution from the Integration Directory.

At design time, the Integration Builder retrieves component information from the
System Landscape Design (SLD). Contents of the Integration Repository are
packaged and delivered in accordance with components. At configuration time, XI-
Objects (Mapping / routing rules) are set up according to the system landscape
description from SLD. At runtime, the Integration Engine retrieves information about
components and involved systems for applying XI-Objects.

Type of Business System
Since the communication occurs using the XML messaging service of the Integration
Engine, the capability of sending/receiving XML messages is highly beneficial for the
involved business systems.

Type of Messaging Concept to be used for
Exchanging Content:

• Integration of business systems using the IDoc adapter
• Integration of business systems using the RFC adapter
• Integration of business systems using the File adapter
• Integration of business systems using the JMS adapter
• Integration of business systems using the JDBC adapter
• Integration of business systems using the SOAP adapter
• Integration of business systems using the HTTP adapter
• Integration of business systems using Proxies

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 11

1.8 Development of Interfaces State of South Carolina

Scenario 1: Integration of Business Systems Using
the IDoc Adapter
The scenarios described below represent only one half of a complete integration
scenario. In a complete scenario, a business system connected to the Integration
Server using the Idoc adapter could play the role of the sender system, the receiver
system or both.

Usage
SAP systems up to and including Basis release 4.6 cannot communicate using XML
messages and HTTP. This means that using the IDoc adapter (or the RFC adapter)
is the only way of connecting such systems directly to the Integration Server. Non-
SAP systems may also be connected using subsystems. However, it is
recommended that only the IDoc adapter be used to integrate business systems with
the Integration Server when there is an actual benefit to the scenario, that is, if one
wants to connect business systems or business processes that were previously not
integrated. Only break up existing and working IDoc communication scenarios (ALE
scenarios, for example) and reroute the corresponding IDoc traffic using the
Integration Server when there is an additional benefit (if one wants to make the sent
IDoc data available to additional receivers in the form of XML messages, or when
additional mapping is required, for example).

Description
A business system is connected to the Integration Server using the IDoc adapter
(Figure 3), which exchanges IDocs with the business system. When receiving an
IDoc from the business system, the Idoc adapter transforms the IDoc into an XML
message for further processing by the Integration Server. To send message data to
a receiving business system using the IDoc interface, the IDoc adapter accepts an
XML message from the Integration Server, transforms it into an IDoc, and sends it to
the business system.

Figure 3. Integration of Business Systems Using the IDoc Adapter

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 12

1.8 Development of Interfaces State of South Carolina

Example
An SAP ERP2004 system sends an IDoc of type MATMAS01 to the IDoc adapter on
the Integration Server. The IDoc is converted into an XML message and processed
by the Integration Server. Two receivers for the IDoc data are determined:

• Another SAP ERP2004 system
• An SAP system that is capable of receiving XML messages directly

On the outbound side, the IDoc adapter converts the XML message back to an IDoc
of type MATMAS01 and sends it to the SAP ERP2004 system, while the other
receiver system receives a (structurally transformed) XML message.

Scenario 2: Integration of Business Systems Using
the RFC Adapter
The scenario described below represents only one half of a complete integration
scenario. In a complete scenario, a business system connected to the Integration
Server using the RFC adapter could play the role of the sender system, the receiver
system, or both.

Usage
SAP systems up to and including Basis Release 4.6 cannot communicate using XML
messages and HTTP. This means that using the RFC adapter (or the IDoc adapter)
is the only way of connecting such systems directly to an Integration Server. Non-
SAP programs that use the RFC SDK cannot be used with the RFC adapter, since
they do not offer any metadata.

Description
A business system is connected to an Integration Engine using the RFC adapter
(Figure 4), which exchanges data with the business system using the RFC protocol.
When receiving an RFC call from the business system, the RFC adapter transforms
the RFC data into an XML message for further processing by the Integration Engine.
To send message data to a receiving business system using the RFC interface, the
RFC adapter accepts an XML message from the Integration Engine, transforms it
into an RFC call, and executes this RFC call.

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 13

1.8 Development of Interfaces State of South Carolina

Figure 4. Integration of Business Systems Using the RFC Adapter

Example
In a typical RFC scenario there is one sender and one receiver. The sender
executes an RFC call, from which an XML message is produced and sent to the
receiver. Data from the receiver’s response message is returned the same way to
the original sender using the RFC protocol.

Scenario 3: Integration of Business Systems using
the File Adapter

The scenario described below represents only one half of a complete integration
scenario. In a complete scenario, a business system connected to the Integration
Server using the file adapter could play the role of the sender system, the receiver
system or both.

Usage
Many third-party or legacy systems cannot communicate using XML messages and
HTTP, but have a file interface instead. This means that using the file adapter is a
possible way of connecting such systems to an Integration Server.

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 14

1.8 Development of Interfaces State of South Carolina

Description
A third-party (or legacy) system is connected to an Integration Engine using the file
adapter (Figure 5), which exchanges text files with the third-party system. When
reading a file from the third party file system, the file adapter transforms this file into
an XML message for further processing by the Integration Engine. To send message
data to a receiving third-party system, the file adapter accepts an XML message
from the Integration Engine transforms it into a text file and writes it to the third party
file system.

Figure 5. Integration of Business System Using the File Adapter Example

The file adapter of an Integration Server reads a file from a third-party file system.
This file is then converted into an XML message and processed by the Integration
Engine. Two receivers for the file are determined:

• Another third-party system
• An SAP system that is capable of receiving XML messages directly

On the outbound side, the file adapter converts the XML message back to a text file
and writes this file to the other third-party system’s file system, while the other
receiver system receives a (structurally transformed) XML message.

Scenario 4: Integration of Business Systems using
the JMS Adapter
The scenario described below represents only one half of a complete integration
scenario. In a complete scenario, a business system connected to the Integration
Server using the JMS adapter could play the role of the sender system, or the
receiver system, or both.

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 15

1.8 Development of Interfaces State of South Carolina

Usage
Many third-party or legacy systems are already integrated using messaging systems
like MQSeries or SonicMQ. In order to integrate with such systems, it is possible to
connect to the corresponding messaging system using the JMS adapter.

Description
A third-party or legacy system is connected to an Integration Engine using a JMS
provider (MQSeries or SonicMQ, for example) and the JMS adapter (Figure 6),
which exchanges JMS messages with the JMS messaging system. When receiving
a JMS message from the JMS provider, the JMS adapter feeds the message for
further processing to the Integration Engine. It is assumed that the received JMS
message already is an XML message. To send message data to a receiving third-
party or legacy system, the JMS adapter accepts an XML message from the
Integration Engine, and sends it to the JMS provider.

Figure 6. Integration of Business System Using the JMS Adapter

Example
A customer already uses a messaging system with custom integration to legacy
mainframe applications. To integrate with these applications, the JMS adapter can
be used to connect to the messaging system.

Scenario 5: Integration of Business Systems using
the JDBC Adapter
The scenario described below represents only one half of a complete integration
scenario. In a complete scenario, a business system connected to the Integration
Server using the JDBC adapter could play the role of the sender system, or the
receiver system, or both.

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 16

1.8 Development of Interfaces State of South Carolina

Usage
Many third-party or legacy systems cannot communicate using XML messages and
HTTP. This means that using the JDBC adapter is one way of accessing the data of
such systems directly on the database level.

Description
A third-party or legacy system (or simply a database) is connected to an Integration
Engine using the JDBC adapter (Figure 7), which accesses database content using
JDBC. When reading database content, the JDBC adapter creates an XML message
from this data and sends it to the Integration Engine for further processing. To send
message data to a receiving third-party or legacy system, the JDBC adapter accepts
an XML message from the Integration Engine extracts the message data and writes
it into the third-party or legacy system’s database.

Figure 7. Integration of Business Systems Using the JDBC Adapter

Example
Data from a legacy system needs to be read at regular intervals and made available
to another system in the form of an XML message. The JDBC adapter reads the
data from the legacy system’s database creates an XML message and sends this
message to the Integration Server.

Scenario 6: Integration of Remote Clients or
Providers of Web Services Using the SOAP Adapter
The scenario described below represents only one half of a complete integration
scenario. In a complete scenario, the business system connected to the Integration
Server using the SOAP adapter could play the role of either the client or the provider
of Web Services, or both.

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 17

1.8 Development of Interfaces State of South Carolina

Usage
Some remote clients or providers of Web Services can only communicate by
exchanging plain SOAP messages. The SOAP adapter is used to connect such
systems directly to the Integration Server. The SOAP adapter provides a runtime
environment that includes various SOAP components for the processing of SOAP
messages. It uses a helper class to instantiate and controls these SOAP
components.

Description
A remote client or provider of Web Services is connected to the Integration Server
using the SOAP adapter (Figure 8), which exchanges SOAP messages with the
remote client or provider. When receiving a SOAP message from the remote client or
provider of Web Services, the SOAP adapter transforms this message into the XI
message protocol (SOAP with header extensions) for further processing by the
Integration Engine. To send SOAP message data to a receiving remote client or
provider of Web Services, the SOAP adapter accepts an XI message protocol
message from the Integration Engine, transforms it into a SOAP message, and
sends it to the remote client or provider. The SOAP adapter must be configured as
an inbound adapter, when the Integration Engine is acting as a service provider; it
must be configured as an outbound adapter, when the Integration Engine is acting as
a service client.

Figure 8. Integration of Remote Clients or Providers of Web Services Using the SOAP Adapter

Example
A remote client of Web Services sends a SOAP message to the SOAP adapter on
the Integration Server. The SOAP message is converted into an XI message
protocol message and processed by the Integration Engine. Two receivers are
determined:

• A remote Web Service provider
• An SAP business system capable of receiving XI message protocol messages

directly

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 18

1.8 Development of Interfaces State of South Carolina

On the outbound side, the SOAP adapter converts the XI message protocol
message back to a SOAP message and sends it to the remote Web Service
provider, while the other receiver system receives a (structurally transformed) XML
message via the XI message protocol.

Scenario 7: Integration of Business Systems via the
Plain HTTP Adapter
The scenario described below represents only one half of a complete integration
scenario. In a complete scenario, a business system connected to the Integration
Server using the Plain HTTP adapter could play the role of either the sender system
or the receiver system, or both.

Usage
Many third-party systems can only communicate via HTTP without a SOAP envelope
around the HTTP payload (plain HTTP). The Plain HTTP adapter is used to connect
such systems directly to the Integration Server. Some third-party receiver systems
(Web servers in market places, for example) can only process data if it is sent as an
HTML form using HTTP post. In such cases the payload of outbound messages can
be enhanced accordingly.

Description
A third-party business system is connected to the Integration Server using the Plain
HTTP adapter (Figure 9), which exchanges XML messages via plain HTTP with the
business system.
When receiving an XML message via the plain HTTP protocol from the business
system, the Plain HTTP adapter transforms this message into the XI message
protocol (SOAP with header extensions) for further processing by the Integration
Engine.

To send an XML message data via plain HTTP to a receiving business system using
the plain HTTP interface, the Plain HTTP adapter accepts an XI message protocol
message from the Integration Engine, transforms it into a plain HTTP protocol
message, and sends it to the business system.

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 19

1.8 Development of Interfaces State of South Carolina

Figure 9. Integration of Business Systems via the Plain HTTP Adapter Example

An external business system sends an XML message via the plain HTTP protocol to
the Plain HTTP adapter on the Integration Server. The XML message is converted
into an XI message protocol message and processed by the Integration Engine. Two
receivers are determined:

• another external business system
• an SAP business system capable of receiving XI message protocol messages

directly
On the outbound side, the Plain HTTP adapter converts the XI message protocol
message back to a plain HTTP protocol message and sends it to the external
business system, while the other receiver system receives a (structurally
transformed) XML message via the XI message protocol.

Scenario 8: Integration of Business Systems using
Proxies
The scenario described below represents only one half of a complete integration
scenario. In a complete scenario, a component system connected to the Integration
Server using proxies could play the role of the sender system (using outbound
proxies), or the receiver system (using inbound proxies), or both.

Usage
SAP systems based on SAP Web AS 6.20 are able to communicate using XML
messages and HTTP. The system uses the proxy interface to connect to an
Integration Engine. Use the proxy interface to integrate component systems with the
Integration Engine to connect the new, cross-platform XML interfaces created in the
Integration Repository.

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 20

1.8 Development of Interfaces State of South Carolina

Description
Use executable ABAP or Java proxies to exchange messages between a business
system and the Integration Engine (Figure 10).
Executable ABAP or Java proxies are provided for all cross-platform XML interfaces
delivered by SAP. For XML interfaces that are created, however, proxies must be
generated before they can be used.

When receiving an XML message from the business system using a corresponding
outbound proxy, the Integration Engine processes that XML message further. When
receiving an XML message from the Integration Engine, the corresponding inbound
proxy on the receiving component system accepts this message and calls the ABAP
or Java class that implements the corresponding inbound interface.

Figure 10. Integration of Business Systems Using Proxies

In this scenario, the sender system, or the receiver system, or both systems can be
connected to an Integration Engine using the proxy interface.

Example
An SAP Web AS 6.20 system sends an XML message using an outbound proxy to
the Integration Engine. The corresponding XML message is processed by the
Integration Engine.
Two receivers for the XML message are determined:

• Another Web AS 6.20 system
• A system that is not capable of receiving XML messages directly (an SAP

4.0B system, for example)

On the inbound side, the SAP Web AS 6.20 receiver system receives a (structurally
transformed) XML message used by the inbound proxy to call the implementing
ABAP or Java class, while the other receiver system requires interaction of, for
example, an IDoc or RFC adapter.

1.8_Development_and_Management_of_Interfaces.doc 1.8 Page 21

	1.8 Development & Management of Critical Interfaces
	1.8 Development and Management of Critical Interfaces
	Guiding Principles
	Interface Design and Development Approach
	 Functional Design
	Technical Design Specification
	Interface Program Development
	Unit Testing
	Integration/End-to-End Testing
	Promote to Production
	 Roles and Responsibilities
	Interface Phases
	Development
	End-to-End/Integration Testing
	Promote to Production
	Interface Tools
	Integration Technique
	Type of Business System
	Type of Messaging Concept to be used for Exchanging Content:
	Scenario 1: Integration of Business Systems Using the IDoc Adapter
	Usage
	Description
	 Example
	Scenario 2: Integration of Business Systems Using the RFC Adapter
	Usage
	Description
	Example
	Scenario 3: Integration of Business Systems using the File Adapter
	Usage
	 Description
	Scenario 4: Integration of Business Systems using the JMS Adapter
	Usage
	Description
	Example
	Scenario 5: Integration of Business Systems using the JDBC Adapter
	Usage
	Description
	Example
	Scenario 6: Integration of Remote Clients or Providers of Web Services Using the SOAP Adapter
	 Usage
	Description
	Example
	Scenario 7: Integration of Business Systems via the Plain HTTP Adapter
	Usage
	Description
	Scenario 8: Integration of Business Systems using Proxies
	Usage
	Description
	Example

